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Abstract 

A dynamical multiple elastic and inelastic electron 
scattering theory is proposed and is applied to the 
plural scattering cases of phonon, single-electron and 
valence (or plasmon) excitations. The incoherence of 
all the possible inelastic scattering processes of 
different energies and momenta is evaluated analyti- 
cally before any numerical calculations. The effects 
of multiple scattering are equivalent partially to the 
broadening of the scattering function of a single 
inelastic process by those of others and partially to 
the re-scattering of the Kikuchi pattern produced in 
one inelastic process by others. The final diffraction 
pattern is a convoluted result of those Kikuchi pat- 
terns produced by different inelastic scattering pro- 
cesses. All these characteristics can be considered in 
just one single formula. The theory of multiple- 
phonon excitations in simulating high-angle annular- 
dark-field (ADF) scanning transmission electron- 
microscopy (STEM) images is proposed. It is shown 
that the single-phonon scattering model is a good 
approximation except at the points close to atomic 
nuclei if the electron probe is comparable in size to 
that of an atom. The higher-order phonon scattering 
may improve the resolution of the ADF STEM images 
of thin crystals. 

I. Introduction 

Inelastic electron diffraction and imaging are impor- 
tant in characterizing crystal atomic structures. The 
fundamental theory describing inelastic electron scat- 
tering in a crystal was given by Yoshioka (1957). By 
considering the incident electron and the electrons in 
the crystal as a whole system, he derived a set of 
coupled Schr/Sdinger equations that included the 
transitions between the ground state and the excited 
states of the crystal. Electron multiple elastic and 
inelastic scattering are included in these equations. 
Applications of this theory and other theories for 
single inelastic scattering have been made by many 
authors in various cases (Howie, 1963; Whelan, 
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1965a, b; Gj0nnes, 1966; Gj0nnes & Watanabe, 1966; 
Cowley & Pogany, 1968; Doyle, 1969; Humphreys & 
Whelan, 1969; Radi, 1970; Okamoto, Ichinokawa & 
Ohtsuki, 1971; Hoier, 1973; Rez, Humphreys & 
Whelan, 1977; Maslen & Rossouw, 1984; Rossouw 
& Bursill, 1985; Bird & Wright, 1989; Wang, 1989, 
1990). Since the lifetime of an excited state (typically 
10 -15 to 10 -13 s) is much longer than the interaction 
time of a fast electron (100 keV) with an atom (about 
10 -Is s), the inelastic scattering of high-energy elec- 
trons can be treated as a time-independent process. 
The inclusion of the excited-state decay effect may 
be considered with the density matrix theory 
(Dudarev & Ryazanov, 1988). 

Electron multiple inelastic scattering, as a small 
effect, may become important in exploring new 
microscopy techniques in the future because the 
energy-filtered diffraction patterns (Reimer & 
Fromm, 1989), for example, may contain the contri- 
butions of phonon double-scattered electrons. 
Although multiple inelastic scattering can be treated, 
in principle, by the Bloch-wave theory (Howie, 1963) 
and the multislice theory (Wang, 1989), the incoher- 
ence of different inelastic excited states makes it 
impractical to calculate the diffraction patterns 
formed by the electrons after exciting the states of 
different energies and momenta because the excita- 
tion of each state has to be calculated separately. 
Thermal diffuse scattering (TDS) or phonon scatter- 
ing is such an example. 

High-energy (typically 100keV) electrons pass 
through specimens so rapidly that vibrating atoms 
are seen as if stationary. The electron diffraction 
pattern and image are the sums of the intensities for 
the many instantaneous pictures of displaced atoms. 
In other words, thermal diffuse scattering is actually 
a statistically averaged quasi-elastic scattering 
(energy loss <0.2 eV) of the electrons from the crystal 
with different thermal-vibration configurations. Thus 
the final detected intensity distribution is a summation 
of all the possible elastic scattering from these 
different distorted lattices. This is the 'frozen' lattice 
model of TDS in electron diffraction (Hall, 1965; Hall 
& Hirsch, 1965; Fanidis, Van Dyck, Coene & Van 
Landuyt, 1989; Fanidis, Van Dyck & Van Landuyt, 
1990; Wang & Cowley, 1990; Loane, Xu & Silcox, 
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1991). However, it is impractical to repeat the whole 
calculation for large amounts of differently distorted 
crystal structures. Thus an important question in 
simulating TDS is how to take the statistical average 
of the elastic electron scattering from these lattice 
configurations before the numerical calculations. 

This problem can be solved using the new dynami- 
cal theory recently proposed by Wang & Bentley 
(1990, 1991 a). The phase correlations of the localized 
inelastic scattering occurring at different atomic sites 
can be statistically evaluated before any numerical 
calculations, essentially providing an easy way for 
treating coherence, incoherence or partial coherence 
in dynamical electron diffraction. The time average 
of electron diffraction from the lattices of different 
thermal vibration configurations can be performed in 
just a single calculation. 

In this paper, the inelastic scattering theory pro- 
posed previously (Wang & Bentley, 1990, 1991a; 
Wang, 1991) will be further developed to treat multi- 
ple inelastic electron scattering in crystals. A theoreti- 
cal scheme for double-scattering processes is given 
and is applied to double-phonon, double single-elec- 
tron, phonon-single-electron and plasmon excita- 
tions (§ 3). This double inelastic scattering theory is 
generalized to multiple scattering cases in § 4. Finally, 
the effects of multiple phonon scattering in simulation 
of high-angle annular-dark-field (ADF) scanning 
transmission electron microscopy (STEM) images are 
described (§ 5). 

2. The basic theory of electron inelastic scattering 

The basic equations governing inelastic electron scat- 
tering in a crystal were derived from wave mechanics 
(Yoshioka, 1957). Consider the interaction of an 
incident electron with a solid; the Schr6dinger 
equation of the system is 

[ -h2 /2meV2+ Hc+ H']c19= Ecrp, (1) 

where -(h2/2me)I72 is the kinetic energy of the elec- 
tron; me = too/[1 - ( v / c ) 2 ]  ~/2 is the mass of a moving 
electron with velocity v; E = eVo+ e2V2/2m¢c2; Vo is 
the accelerating voltage of the electron microscope 
(Spence, 1988); Hc is the crystal Hamiltonian; H '  
describes the interaction between the electron and 
the solid. The wave function of the system, 
q~(r, r ~ , . . . ,  rM), depends on the coordinates of the 
incident electron r and on the coordinates of the 
electrons and ions rl,  • • •, rM of the crystal. Neglect- 
ing exchange effects, one can write 

q ~ ( r , r , , . . . , r M ) = Y  a , ( r l , . . . , r M ) g ' , ( r ) ,  (2) 
n 

where a, is the wave function of the crystal in its nth 
excited state of energy, e,, so that 

Hca. = e.a. .  (3) 

gro in (2) describes the elastically scattered wave of 
energy Eo = E and ~ ,  describes the inelastically scat- 
tered wave of energy E, = E - e,, with n = 1, 2 , . . . .  
Substitution of (2) and (3) into (1), multiplication by 
a* and integrating over the coordinates r ~ , . . . ,  rM 
yields 

(172 + k2.,) tF,, = (2me/ h 2) ~" n'.m(r) gtm 
m 

with n = 0 , 1 , 2 , . . . ,  (4a) 

where 

and 

k 2 . - ( 2 m e / h 2 ) E .  (4b) 

H',m=-- I a* H'am dr, ,  . . . , drM. (4c) 

Multiple elastic and inelastic scattering of electrons 
in a crystal are all included in Yoshioka's coupled 
equations. If one assumes electron scattering angles 
are of the same magnitude as Bragg angles and takes 
the inelastic scattering as a position modulation to 
the inelastic incidence wave (i.e. the wave with energy 
E. and wave vector k.) ,  analogous to Howie's (1963) 
method, the solution of (4a) can be written in the form 

~ .  - ~bn(r) ~° ( r ) ,  (5a) 

where tF°(r) is the elastic wave of free-space wave 
vector k~, which satisfies the boundary conditions 
and the elastic scattering Schr6dinger equation 

(V2+k2n)alr°n=(2me/h2)V(r)ttr°n, (5b) 

where V = H ' , .  It is important to point out that ~ ° ( r )  
is the full solution of (5b) rather than a single stream 
of Bloch-wave solution. Therefore, (5a) has a more 
generalized meaning compared to that defined by 
Howie (1963). Equation (5b) can be solved using the 
multislice method for a known incident electron 
probe (Cowley & Moodie, 1957). Now one tries to 
seek the first-order solution of (4). Under the small- 
angle approximation, by neglecting the V2cb, term 
and using (5b), (4a) becomes 

0 ~ ' ° ( r )  04 , . (r )  ,~ y '  , o 
- H.m(r) ~ m(r)~b,. (r) 

Oz Oz 
m ~ n  

with n =0,  1 , 2 , . . . ,  (6) 

where a-= rne/fi 2. Equation (6) can be rewritten as 

04).(r)/Oz= a Z U,m(r),b,.(r) 
m : ~  n 

with n = 0 , 1 , 2 , . . . ,  (7a) 

where 

U,,m- H',,, ,(r)gr°(r)[Oqt°(r)/Oz] -~ (7b) 

For thin crystals satisfying [a J~ dz Ulol'~ 1 [i.e. d < 
(A/1r)E/H'~o, where A is the electron wavelength], 



688 MULTIPLE INELASTIC SCATTERING 

and under the single-inelastic-scattering approxi- 
mation, 

a~,(r)/az = a U,o(r)~bo(r). (8a) 

The boundary condition is ~b,(b, z = 0) = 0, where b = 
(x, y). If the absorption effects of the inelastic scatter- 
ing are neglected, ~bo(r)= 1 and one has 

~b,(r) = a i dz, U,o(b, z,) (8b) 
0 

or 

l / t l (b , Z ) :  a [ !dz~  U~o(b, z~)]qt°(b, z). (8c) 

Equation (8c) is the first-order solution of (4a) for 
thin crystals under the single-inelastic-scattering 
approximation and is equivalent to the inelastic scat- 
tering multislice theory proposed by several authors 
(Cowly & Pogany, 1968; Doyle, 1969; Wang, 1989) 
(see Appendix A for proof). This inversely confirms 
the validity of the approximations under which (6) 
and (7) were derived. 

Compared to the Bloch-wave (Howie, 1963; Mas- 
len & Rossouw, 1984) and multislice theories, the 
most important feature of this new approach [(8c)] 
is that the phase correlations of the inelastic scattering 
process occurring at different atomic sites can be 
evaluated analytically before any numerical calcula- 
tions. This provides an easy way for evaluating coher- 
ent, incoherent or partially coherent scattering 
between different inelastic excited states. Equation 
(8c) has been applied to treat single-phonon excita- 
tions based on the semiclassical 'frozen-lattice' model 
(Wang & Bentley, 1991a) and the full lattice dynamics 
(Wang, 1991). The theoretical results have suc- 
cessfully interpreted the thermal diffuse streaks 
observed in electron diffraction patterns and their 
intensity profiles. Further applications of (8c) have 
provided a simple theory for considering the valence 
excitation effects in simulating high-resolution elec- 
tron microscopy images (Wang & Bentley, 1991b). 
In this paper, we try to use (8c) as the first-order 
iteration solution of (7a) and apply them to treat 
multiple inelastic scattering in electron diffraction. 

the ground state to each of the two states can be 
described by (8). If the transition-matrix elements are 
denoted by U(,) = U,o for ~b(l) and U(2)= Umo for ~b(2), 
the double scattering (d~D) can only be either from 
process (or event) ~b(~) to process ~b(2) or from ~b(2) to 
4'(~) (see Fig. la) .  This treatment has separated the 
double inelastic scattering into two single-step proces- 
ses; the direct scattering (or one-step process) of the 
electrons from the ground state (~bo) to the final 
inelastic state ($D) (such as the excitation of a double 
plasmon, for example) is neglected. This direct scat- 
tering is usually termed the 'coherent' inelastic scat- 
tering [for double-plasmon excitations see Spence & 
Spargo (1971)] and is typically small in practice. 
Thus, according to (7a), one has 

ackD(r)/az = a{ U(2)(r)$(,)(r) + U(l)(r)$(2)(r)} 

= 2 {  U~2)(r) io dz, U(,)(b, z,) 

"IL e(l)(r) iO dz, U(2)(b, zi) }. (9) 

In (9), the electrons which undergo inelastic event 1 
first then event 2 or event 2 first then event 1 would 
have .the same phase shift; thus they can be treated 
as coherent. The first term in (9) means the inelasti- 
cally scattered wave generated at depth z~ by event 
1 is being inelastically scattered (event 2) again at 
depth z after being elastically scattered from zl to z. 
An equivalent interpretation applies to the second 
term. The solution of (9) is 

4~o(r) = c~ 2 dz, U(l)(b, z,) dz'~ U(2)(b, z',) , (10) 
0 

which satisfies the boundary condition 4,D(b, z = 0) = 
0. If one puts (10) and (7b) into (5a), the double- 

(2) 

J (2) 

(a) 

3. Double inelastic scattering 

3.1. General theory 

Now consider the cases of double inelastic scatter- 
ing. The crystal can be considered as either in its 
ground state (elastic) or in one of its two 'indepen- 
dent' excited states. By independent one means that 
the excitation of each state is not affected by the other 
one and can be treated separately, such as single- 
electron and phonon excitations. The transitions from 

(b) 

Fig. 1. Schematic models showing (a) double and (b) triple 
'independent' inelastic-scattering processes in high-energy elec- 
tron diffraction, where (n), n = 1,2 . . . .  , means the nth inelastic- 
scattering process or event. 
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scattered wave at the exit face of the crystal z = d is 

tFD(b, d) = a 2 dzl H~l)(b, zl, q)S~ll(b, Zl) 

x I dz'l H~2)(b, z'l, q')S(2)(b, z'l) 
0 

x gt°)(b, d), ( l l a )  

where 

S(~)(b, z ) -  ~°(b,z)[O~,,)(b,z)/Oz]-~ ( l i b )  

~ , ) ,  ~ o  and 1/,o are the elastically scattered waves 
of incident electrons of wave vector k(~), k~2) and kD, 
respectively, and H~I) and H~2) are the interaction 
Hamiltonians for process 1 (of momentum transfer 
q) and 2 (of momentum transfer q'), respectively. The 
calculation of St,, ) in the multislice scheme is given 
in Appendix B. The physical meaning of (11 a) can 
be simply stated as follows. The double inelastic 
waves can be generated at any point inside the speci- 
men with a probability function proportional to 
IHI,)HI=)I 2. The inelastic events occurring at different 
atom locations are marked with a 'historical tag', 
S,,I = T~(r)[OW~,)(r)/Oz] -~, which is responsible for 
the formation of Kikuchi lines (see Appendix B); the 
elastic scattering of those electrons after a single 
inelastic excitation is the same as the elastic scattering 
of incident electrons with equivalent energy and 
momentum. In practice, the determination of T~,) 
for different momentum transfers (or different 
incident wave vectors) involves huge amounts of 
calculations. For simplification, one assumes that the 
inelastic scattering does not significantly affect the 
distribution of electron current inside the crystal, i.e. 
qt~,)(r, d)-~ qt°(r, d). Defining 

X(b, z,, z',) = Si,)(b , z,)Sc2)(b , z ' i ) ~ I t ° ( b ,  d) (12) 

and taking a 2D Fourier transform of ( l l a ) ,  in 
reciprocal space r = (r, ,  ry), one obtains 

d d 

tItD(T,d)~--a 2 ~ dz ~ dz' H;,)(T,z,q) 
0 o 

®H~2)(r ,z ' ,q ' )®X(r ,z , z ' ) ,  (13) 

where ® indicates a convolution operation of r. In 
general, for a 3D periodic crystal structure (Howie, 
1963), H '  can be written as 

H~)(r,  q) = exp (iq. r) 2 H~(")(g-q) exp ( - i g .  r) 
g 

(14a) 

o r  

H ' ( r ,  z, q)=  [(27r)2/A] exp (iq~z) 

x ~  H'~")(g--q)6(r--q+qb), (14b) 
g 

where H~ "~ is the Fourier coefficient of the interaction 

matrix element H'~, A is the area of the crystal unit 
cell perpendicular to the incident-beam direction and 
hq = h(ko-k t , ) )  is the momentum transferred by the 
incident electron. Putting (14b) into (13), one obtains 

d d 

WD(7",d)=(47r2a/A) 2 ~ dz ~ dz' exp[i(q.z+q'z ')]  
0 0 

× E E H 'g' " H 'g '2 ' 
g g '  

x X ( r - g + q , - g ' + q ~ , ,  z, z') 

- - (47r2a/A)2yY H ~ ~ )(g - q) n~,'"' 2>,tg, - q') 
g g 

xZ(r - -g+qb--g '+q 'b ,  qz, q'~), (15) 

where 

Z(%q:,qz ' )=-[!dzexp( iq:z)S~l) (r ,z )]  

® j" dz' exp (iq'~z')S~2~(r, z') 
0 

® ~ ( r ,  d). (16) 

In (16), the convolution of SII) with S~2) means the 
rescattering of the Kikuchi pattern produced in event 
1 by the second inelastic event 2. Summing the 
intensities contributed by the inelastic scattering pro- 
cesses of different q and q's incoherently and neglect- 
ing the coupling between different g's, one obtains 

ID(r)=[V,'/(2~)3] 2 S dq J" dq'lqtr)(r, d)[ 2 
BZ BZ 

~-[Vc/(2rr)312(47r2a/A)4y.Y. ~ dq ~" dq' 
g g" BZ B Z  

x IH'g~l'(g-q)12lH/,2'(g'-q')12 
! p 2 x[Z(~'--g+qb--g'+qb,q:,qz)[ , (17) 

where Vc is the volume of the unit cell; the integration 
ofq and q' is restricted to the first Brillouin zone (BZ) 
and the subscript b refers to the projection of the 
corresponding quantity in the xy plane. Equation (17) 
can be further simplified by separating the integration 
of q into qb = (q,, %) and qz. By defining a function 

( l ) /  Tg tg -qb )  

{ i  aa/27r)'dqz'H'~')(g-q)12az 

- ifqb falls within the first BZ 
otherwise (18) 

where a 3 = V c / A  is the height of the unit cell in the 
z direction, one can extend the integration of qb to 
(-oc, oe) in reciprocal space. Since q~ and q'z are 
mainly related to the electron energy loss by qz ~- 
ko(E - EI)/2E and q'z = ko(E - E2)/2E independent 
of qb and q~, (Egerton, 1986), one can take 
Z(r, q~, q'z) = Z(r )  out of the integrations of q. and 
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q'z and thus 
oO of) 

I , ~ ( r ) - ~ 4 Z Y  '. ~ dqb ~ dq~, T~g')(g-qb) 
g g ' - c o  - o o  

x T~g2)(g'--q'b)lZ(r--g+qb--g'+q'b)l 2 

=¢4yE (19a) 
g g '  

and 

= 2 ~ a / A  I/2 (19b) 

Equation (19) can be conveniently written as 

lo(r)=¢{TtZ~(r)®T~')(r)®lZ(r)12}, (20) 

where 

T~")-~, T~g")(r). (21) 
g 

The calculation of the Z function can be performed 
with the multislice theory. Equation (20) is the general 
solution for double inelastic electron scattering. The 
incoherence of these states has been evaluated in (20). 
Electron diffraction from different 'frozen' lattice 
models in TDS, for example, can be covered with 
this single calculation. This is the unique advantage 
of this theory. 

Equation (20) is derived based on an assumption 
of ' independent'  scattering events. This has neglected 
the virtual inelastic corrections introduced by other 
processes (Yoshioka, 1957). It is important to note 
that an imaginary part should be introduced in the 
atomic potential V [(Sb)] in order to take into account 
absorption effects. 

3.2. Double-phonon scattering 
Phonon scattering is generated by atomic vibrations 

in the crystal. The thermal vibration introduces a 
small time-dependent displacement to each atom, 
which gives a small correction to the potential of the 
equilibrium lattice. The first-order correction to the 
crystal potential due to atomic vibrations is (Takagi, 
1958) 

AV(r) = ~  ~ { Vt[r-  R(h) - r(I) - u(~h)] 
h I 

- V~[r- R(h) - r(I)]} (22) 

where V~(r) is the tth atomic potential and u(h) is the 
displacement of the Ith atom in the hth unit cell which 
can be expressed as a sum of normal harmonic oscil- 
lator modes of momentum q, frequency %(q) and 
polarization vector e(II~) (Born, 1942; Briiesch, 1982): 

u(h) = ( h / 2 NmO 1/2 2 Z [ toj( q) ]-'/2e( l[~) 
q ) 

xexp{iq.[R(h)+r(l)]}[a+(-jq)+a(7)], (23) 

where N is the total number of primitive unit cells 

in the crystal; m~ is the mass of the lth atom; a + and 
a are defined as the creation and annihilation 
operators of a phonon with momentum q and 
frequency %(q), respectively, and j  indicates different 
acoustic and optical branches. For a 3D periodic 
structure, using the relationship 

~, exp[irR(h)]=[(2~r)3/Vc]~, 6 ( r - g ) ,  (24) 
h g 

where g is a 3D reciprocal-lattice vector, the interac- 
tion Hamiltonian for creating a phonon of momentum 
q and frequency %(q) is (Whelan, 1965a, b; Rez et 
al., 1977) 

H'(r ,  q, to)= (N(q, to)+ l[[-eAV(r)]lN(q, to)) 

= - ie(2'n') 3 E ~ At[toj(q)] 
I g 

x e(tl7). ( g - q )  Vl(g- q) 

×exp[i(q-g) .r]exp[ig .r(I )] ,  (25) 

where 

Vl(g) = Vc-'~ V~(r) exp ( - i g .  r) dr; (26) 

N(q, to) is the occupation number of the phonon state 
IN(q, to)), 

N(q, to)=[exp(t~toJksT)-l]- '  (27a) 

and 

A,(toj(q))-{h(N(q, to)+ 1)/2%(q)m.N} '/2 (27b) 

is the atomic vibration amplitude in phonon mode 
%(q). Thus, 

H'g(r) = -ie(27r) 3 • A~(%(r)) e(ll~ ) . r 
I 

x Vt(r) exp [ ig.  r(l)]. (28) 

Putting (28) in (18) and (21), summing over different 
phonon branches and defining 

P~(r)=a3e2N(27r)50(r) ~, ~ dqzlA~(%(r)) 
j B Z  

x [e(tl~). r] V~(r)l 2 (29a) 

as the phonon scattering function, where a 'switch' 
function is defined as 

[1  i f r  falls within the first BZ 
O(r)-  (29b) /0 otherwise 

and N is the total number of primitive unit cells in 
the crystal, one obtains 

T(WC'S) = E P.(r). (30) 
I 

The relationship 

Y exp {ig. [ r ( l ) - r ( l ' ) ]}  = N6u, (31) 
g 

was used in deriving (30), where I and I' are restricted 
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to the atoms in the same unit cell. According to (20), 
the intensity distribution in a double-TDS diffraction 
pattern is 

ID--TDS=~4I~"~Z PI2('T)(~PII(T)}Q{ Z('i')[2}, (32) 
I,. 12 11 

where the summations of I1 ana I2 are restricted to 
the atoms in the same unit cell. The terms purely 
related by lattice dynamics are included in the first 
{ } bracket. The terms related by dynamical electron 
scattering appear in the second { } bracket; these terms 
are determined solely by the elastic-scattering 
Schr/Sdinger equation [(5b)] and can be solved using 
the multislice method (Cowley & Moodie, 1957). The 
scattering function of the double-phonon process is 
the convolution result of those for two single- 
inelastic-scattering processes. This convolution of the 
angular distribution function of a single-inelastic- 
scattering process with itself leads to a broader distri- 
bution. Equation (31) is consistent with the multiple 
diffuse scattering theory of H0ier (1973). If one puts 
(27) into (29a), the TDS streaks observed in electron 
diffraction patterns are approximately determined by 
(Honjo, Kodera & Kitamura, 1964; Komatsu & 
Teramoto, 1966; Wang, 1991), Pt(~')=F.j [ tOj (7" ) ]  - 1 ,  

where ~o~(q) is the phonon dispersion relationship 
determined by the 2D atomic vibrations in the (hkl) 
plane perpendicular to the incident-beam direction 
B = [hkl]. The TDS streaks are defined by the rx - Zy 
curves which satisfy toj(~-)= 0. The sharpness of the 
TDS streaks will be degraded by multiple-scattering 
effects because of the convolution of the P function 
which occurs in (31). This is in agreement with the 
experimental observations shown in Fig. 2. The TDS 
streaks can only be clearly resolved from the back- 
ground scattering if the specimen is thin (Fig. 2a). 
In this case, only single inelastic scattering is impor- 
tant. Multiple scattering smears out the TDS streaks 
if the specimen is thick (Fig. 2b); the intensity distri- 
bution of the TDS electrons can be taken as a 'uni- 
form' background. 

If the contributions of all the atoms are considered, 
one obtains 

H~m(r, q ) =  (e2/Vceo) E E [elnm(g--q)/g-q 2] 
g l 

xexp[i(q-g).r]exp[ig.r(I)]. (34) 

(a) 

3.3. Double single-electron excitations 
Single-electron excitation is another inelastic scat- 

tering process in electron diffraction and is generated 
by exciting an atomic inner shell. Since this process 
is mainly determined by the properties of a single 
atom, it is thus possible to use the tight-binding 
approximation for calculating H i  < n). Whelan ( 1965 a ) 
gave 

H'nm=(e2/V:o)enm(g-q)/lg-q 2, (33a) g 

where 

enm(K)=(nlexp(-iK.r)lm), (33b) 

In> and Ira) are the normalized one-electron atomic 
wave functions and Vs is the volume of the crystal. 

(b) 

Fig. 2. Diffraction patterns from (a) a thin Si (001) crystal showing 
the TDS streaks along (110) and (b) the multiple-inelastic- 
scattering background from a thicker Si crystal. The visibility of 
the TDS streaks is degraded partially due to multiple-inelastic- 
scattering effects. 
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Comparison of (34) with (14a) gives 

Hg"m(r) = (e2/V<eo) E [ e',m(r, qo)l "1"2 -[- q2o] 
I 

x exp [ ig.  r(l)], (35a) 

where 

qo~- ko( E -  Ei) /2E.  (35b) 

3.5. Valence excitations 

Valence (or plasmon) losses are generated by the 
collective excitations of the electrons in the crystal. 
These processes usually involve small energy loss 
(about 10-30eV) and small momentum transfers. 
Valence excitations are characterized by the dielectric 
response function e(to, q) of the system. According 
to the result of Okamoto et al. (1971), the scattering 
function for valence excitation can be written as 

Using (31), one obtains 

TtS)=[e2/Vceo]2NO(r) ~, [lello(r, qo)12/(r 2 + qo2)2]. 
I 

(36) 

The calculation of e t.,., in general, involves compli- 
cated many-body theory. However, under reasonable 
approximation, the element ' e,,,, can be calculated 
based on a hydrogen-like model for some light ele- 
ments, such as carbon and silicon (Egerton, 1986). 
In (35), ' e,,,, is related to the generalized oscillator 
strength (GOS)f~,,,, (Inokuti, 1671) by 

f t ,  = (  E _E,,/,~aZo) et,, 2/(r2+q2o) ' (37) 

where ~ = 13.6 eV is the Rydberg energy and ao = 
0.053 nm is the Bohr radius. Since f',,,, depends 
weakly on r, one can approximately take f t , ,  out of 
the convolution operation. For double single-electron 
excitations, using (20) and (37), the intensity distribu- 
tion in the double single-electron scattered diffraction 
pattern is 

ID-S = f 4 [  e21 Vceo]4[ N2(,~a~)2/ ( E _ E,)( E -  E2)] 

Im,'om :ol} { , × (38) 

where 

C(r)~-[O(r)/(r2+q2o)]®[O(r)/(r2+q2o)].  (39) 

The electron angular distribution is contained in the 
last { } bracket. 

oo 

T(V)=[e2hV~/zreo]O(r) ~ dto - - g  

0 

x I m { - [ e ( r ,  - r - g ,  to)]- ' } [ , ' r  2 + (to/v)=] - ' ,  

(41) 

where e is the generalized energy-loss function and 
to is frequency. If only the g = 0 term is important, 
so that e ( r , - r - g ,  to) becomes the usual dielectric 
function e(r, to), one has 

T ( v ) =  T(o v ) =  [ e 2 h V~I "rreo] 0 ("r) 

oc, 

x I d~  Im { - [ e ( r ,  o ) ] - l }  
o 

x[~ -~ + (o.,/vY]- '  (42) 

Therefore, the diffraction patterns for valence- 
phonon, valence-single-electron and valence-valence 
double excitations can be obtained by using the corre- 
sponding T (v) [(42)], T tTDs) [(30)] and T ~s) [(36)] 
in (20), respectively. The lengthy results will not be 
listed here. 

It is important to note that the phase shift in inelas- 
tic scattering has been evaluated in (31) before any 
numerical calculation. The calculations of T func- 
tions depend only on the modulus squared of the 
scattering-matrix element. This is a key point which 
makes this theory more powerful than any other 
theories. The T functions for phonon and valence 
excitations can be directly calculated if the phonon 
dispersion relationships and medium dielectric func- 
tiohs are known, respectively. 

3.4. Phonon- single-electron excitations 

If one puts (30), (36) and (37) into (20), the diffrac- 
tion pattern formed by phonon-single-electron exci- 
tations is 

lo-s = ~4[ e21 V < e o Y [ m a  ~ol ( E - G)]  Y. Y. If'~%l e,,(~) 
12 l i  

®[O(r ) / ( r2+q~)]® Z( r )  2. (40) 

4. Multiple-scattering theory 

Before proposing the multiple-scattering theory, one 
considers a triple-scattering process (~bT). The crystal 
can be considered as either in its ground state (elastic) 
or in one of its three 'independent'  excited states. The 
transitions from the ground state to each of the three 
states can be described separately by (8). An electron 
can be scattered in 3 ! difference sequences among the 
three inelastic states (see Fig. 1 b). Using the double 
scattering result in (9) and through (7a), one obtains 
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for triple inelastic scattering where 

86T(r)/az = a3{ U(3)(r) o j dz2 U(2)(b, z2) 

x j d z i  U(l)(b, zl) 
0 

+ U(2)(r) i dz2U(,)(b, z2) 
0 

× j dzl U(3)(b , Zl) 
0 

+ U(,~(r) j dz2 U(2)(b, z2) 
0 

x oi dz, Uo)(b , z,)}. 

The solution of (43) is 

dpT(r)=a2{ ! dz3 U(3)(b, z3) j dz2 U(2)(b, 

x o j dz, U(,)(b, z,)}. 

(43) 

(44) 

Zm(r)- &~)(r)NS(~_,)(r)N...NS(,)(r) 

® ~°(r ,  d), (47b) 

and 

d 

S~,,,)('r) = ~ dz exp [iq(,,)z]S~ml('r, z) (48a) 
0 

q(,,,) = k.,( E - E~)/2E. (48b) 

The physical meaning of (46) and (47) can be under- 
stood as follows. The effects of multiple scattering 
are equivalent partially to broadening the single-scat- 
tering function [T (")] by those of other processes 
and partially to rescattering the Kikuchi patterns 
(IS(l)® 1/'°12) produced in one single-scattering pro- 
cess by others. The convolution operations of S(,) 
functions in (47) mean the convolutions of Kikuchi 
patterns produced by different inelastic-scattering 
processes. The commutative property of the convolu- 
tion operations in (47a) shows that there will be no 
difference whichever process is considered first in the 
calculations. Also, (47) can be applied to the single- 
scattering case simply by taking m = 1. 

It can be generalized from (10) and (44) that the 
electron wave function after being multiply 
inelastil0cally scattered for rn times among the rn 
states is 

~bm(r)=co am fi jdz,,U(.)(b,z.) form_>l; (45a) 
n = l  0 

4~o(r) : Co. (45b) 

It can be proved directly from (45a) that 

a~m(r)/az=a Z U(.~m,(r)l..,:,._,.., (46) 
n = l  

where ~b,,,(r)[ rn'=m-I * n means the m'th-order multiple 
inelastic scattering among the (m - 1) events exclud- 
ing event n and is determined by (45a). Equation 
(46) is equivalent to (7a) if the approximations 
addressed at the beginning of § 3.1 are considered. A 
constant Co is introduced in (45) to take into account 
the absorption effect in order to normalize the total 
scattering intensity. Following the analogous pro- 
cedures as used from (10) to (20), the intensity distri- 
bution contributed by the ruth multiple inelastic scat- 
tering is 

In(7") = ( Co~m)2{ T(m)('r)(~ T(m- 1)('/-) ®...(~) T(')(r)} 
® Zm(r) 2, (47a) 

5. Contributions of TDS electrons to high-angle 
annular-dark-field images in STEM 

The high-angle annular-dark-field (ADF) STEM 
image is formed by collecting the large-angle-scat- 
tered electrons when a small electron probe scans 
across a specimen (Pennycook & Boatner, 1988; Xu, 
Kirkland, Silcox & Keyse, 1990). It has been shown 
that TDS takes the dominant role in determining 
image contrast based on a single-phonon-scattering 
model (Wang & Cowley, 1990). Now one considers 
the contributions of multiple phonon scattering. If 
an incident electron probe ~°(b,  d ) =  ~ ° ( b - b o ,  d) 
is centred at bo, the contribution from double phonon 
scattering can be derived as follows. Putting (22) and 
(23) in (25), one obtains 

H'(r,  q, to) 

= - e  ~ ~ A~[%(q)]e(ll]).V Vt[r- R ( h ) -  r(1)] 
h I 

x exp {iq. [R(h) + r(I)]}. (49) 

Equation (49) is the result of the single-phonon- 
excitation model. The small-angle approximation was 
not introduced when deriving (49). Using (13) and 
assuming that all the phonon-scattered electrons have 
been collected by the ADF detector, the contribution 
of the electrons in phonon mode (q, w) to the ADF 
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STEM image is 

d,I g 'o(r ,  d)l 2 
--OO 

oc2 

= ~ db I ~ o ( b ,  d)[ 2 
--(xD 

4 p =a Jdb dzlH(l)(b, zl,q)S(i)(b-bo, zl) 
0 

x dz; H~2)(b, z;, q')&2)(b-bo, z;) 
0 

x [~/'°(b-bo, d)]2}. (50) 

Now if the crystal is cut into many slices of equal 
thickness Az, the integration of z, can be written as 
a sum of n slices, 

S dz ['P'o(z, d) l  ~ 

= ~4(az )~ Idb  H~,)(b, zo, q)S~,~(b-bo, z.) 

! t x H(2)(b, z~, q')S(2)(b-bo, z') 

x [~/ ,°(b-bo,  d[2}. (51) 

Since H' is a peak function at each atomic site for 
localized inelastic scattering, the square of  the sum 
can be approximately given by a sum of  the squares 
and one obtains 

J" d-r IWo(z, d)l 2 

x [ ~ ° ( b -  bo, d)12}. (52) 

Summing (52) for different phonon branches j and 
j '  and phonon modes q and q', the image intensity 
contributed by double-phonon processes at bo is 

l(2,(bo)=[Vc/(2zr)3] 2 ~. S dq ~. j" dq 
j = l  B Z  j ' = l  B Z  

×.f d~- 1~o(~-, d)l ~ 

~" O~4(Az)4 I db{ [~ [ V¢/(2zr) 3] 

x ~ ~ dqlH'(b, zn, q ) S ( b - b o ,  z,,)[2/2- 
j = l  BZ J 

x [ g , ° (b -  bo, d)121. (53) 
J 

Putting (25) into (53), assuming that Vt is a sharp 
peak function located on atomic nuclei and neglecting 
the q and to dependence of e, one obtains 

l(2)(bo) = I db G2(b, zn) lS(b-  bo, z~)l 2 

× I ~ ° ( b - b o .  d)[ 2, (54) 

where the TDS generation function of the nth slice is 

G2(b, zn)=(ea)2EZ A~ 
n 1 

x ({0v,[b- Rb(h) -rb(1)]/Ox} 2 

+{Ovt[b-Rb(h)-rb(1)]/Oy}2), (55) 

where the summations over h and I are restricted to 
the atoms falling in the nth slice; the average ampli- 
tude square is defined as 

A~=[Vc/(27r) 3] ~. ~ dqA~[toj(q)] (56) 
j = l  B Z  

and vt is the projected atomic potential in the xy 
plane, 

vt[b-Rb(h)-rh(1)] 
z + A z  

= "[. dz V~[b-Rb(h)-rb(l),z].  (57) 
Zn 

Equation (54) is not limited by the assumption of 3D 
periodic structure; defects or imperfections can be 
included in the calculations by generalizing (55) as 

G2(b, z . )=(ea)2~ A2i({Ovi[b-rb(i)]/Ox} 2 
i 

+ {0 v,[b - rb(i) ]/Oy}2), (58) 

where the sum over i is over all the atoms falling in 
the nth slice. It is necessary to point out that (54) 
was derived by neglecting the q dependence of the S 
function defined in ( l i b ) ,  which means that the 
'inclined incidence' effect (or q correction to wave 
vector k) of phonon scattering is neglected (Wang, 
1991). 

Similar procedures can be applied to consider 
higher-order effects. For the ruth order of multiple 
phonon scattering, one can obtain 

l(,,,)(bo) =f. j" db G2(b, z~)lS(b-bo, z.)[ 2 

× I ~ ° ( b - b o ,  d)l 2, (59) 

where a constant coefficient fm is introduced for the 
normalization of total scattered intensity. If the multi- 
ple phonon scattering is governed by a Poisson distri- 
bution law, i.e. 

fm =fo/m!, (60) 

the total contribution of phonon scattering to the 
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ADF STEM image is 

ITDs(b0) 
3(5 

= ~ l~m)(bo) 
m = l  

x ] q t ° (b -  bo, d)12. (61) 

Equations (59) and (61) were derived based on an 
assumption that the ADF detector is so large that all 
the phonon-scattered electrons have been collected 
by the ADF detector. In practice, a finite detection 
function D(-r) can be introduced in calculations by 
replacing the atomic scattering factor by 

V~(r) = D(-r) V~(-r), (62) 

which means that the Fourier components falling 
outside the ADF detector angular range can be 
dropped off in the atomic scattering factor (Wang & 
Cowley, 1990). It is worth noting that (61) cannot be 
written in a convolution form. 

Now consider the validity of the single-phonon- 
scattering model. The contribution of single-phonon 
excitation to the ADF image is given by 

/~,)(bo) =f0 S db {~ G(b,z,,)[S(b-bo, z,,) 2 } 

x ] q t ° (b-  bo, d)] 2. (63) 

Thus, single scattering [(63)] approximates multiple 
scattering [(61)] if 

{~ G2(b, z,)[S(b-bo, z,)[2} "~ l. (64) 

However, this condition may not be satisfied when b 
is close to the equilibrium positions of atomic nuclei. 
Consider the following simple model. If an atomic 
potential can be represented by a Gaussian function, 

v,-~ Vo exp (-b2/rg), (65) 

where Vo and ro are the depth and radius of the atomic 
potential v/ell, respectively, and S is approximately 
of the order 1/ko=A/21r (see Appendix B), the 
maximum value of {Z, G2[S[ 2} can be evaluated as 

{E G21S12} max = 7 / ' 2 ( 1 ) 0 / V ° ) 2 ( A l / r ° ) Z ( A z / A ) 2 N ° '  

(66) 

where No is the total number of crystal slices. Typi- 
cally, if v o = l k V ,  Vo=100kV, A~=0.01nm,  ro= 
0"05 nm, Az = 0.2 nm, ;t ~-- 0.0037 nm and No = 50, 
(66) yields 

{~n a2[SJ2}max =6" (67) 

Therefore, condition (64) is not satisfied at the points 
close to the atomic nuclei. In practice, if the size of 
the electron probe is considerably larger than the 
atom size, the single-phonon-scattering model is a 
good approximation. Multiple-scattering theory 
[(61)] may be necessary for quantitative image analy- 
sis. It is interesting to note that the 'target' scattering 
function of the multiple-phonon model [i.e. the term 
in the square brackets in (59)] is sharper than that of 
the single-phonon model [i.e. the term in the curly 
brackets in (63)]. Therefore, the ADF STEM image 
formed by the multiple-phonon-scattered electrons 
may have higher resolution than that produced by 
the electrons after single-phonon scattering. This 
statement applies only to specimens with thickness 
less than about l0 nm. 

6. Concluding remarks 

A dynamical multiple elastic and inelastic electron 
scattering theory is proposed for 'independent' inelas- 
tic scattering events. By independent one means that 
the excitation of each state is not affected by the other 
states and can be treated separately using single 
inelastic scattering theory. In practice, the absorption 
effects introduced by different inelastic scattering pro- 
cesses can be included in the calculations of these 
'independent' states. The plural scattering of phonon, 
single-electron and valence (or plasmon) excitations 
can be comprehensively included in a single formula. 
The scattering functions for these different types of 
inelastic scattering events have been derived and 
applied to double inelastic processes. The most 
important advantage of this new theory is that the 
incoherence of all the possible inelastic scattering 
processes of different energies and momenta can be 
evaluated analytically before any numerical calcula- 
tions, providing an easy way of evaluating coherence, 
incoherence and partial coherence in electron diffrac- 
tion calculations. The quasi-elastic scattering of elec- 
trons from crystal lattices of different 'frozen' 
configurations in thermal diffuse scattering (TDS) (in 
terms of semiclassical theory), for example, can be 
covered in just a single calculation. 

The effects of multiple scattering are equivalent 
partially to the broadening of the scattering function 
of a single inelastic process by those of others and 
partially to the rescattering of the Kikuchi pattern 
produced in one scattering process by others. The 
final diffraction pattern is a convoluted result of those 
Kikuchi patterns produced by different inelastic-scat- 
tering processes. 

In this new theory, only the modulus squared of 
the scattering-matrix element is needed; the phase 
shift of inelastic scattering has been evaluated before 
any numerical calculation. Compared with the Bloch- 
wave theory (see Maslen & Rossouw, 1984), this 
is an important advantage of the new theory. In 
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addition, the equivalence of this theory with the 
inelastic multislice theory has been proved. 

Finally, the theory of multiple-phonon excitations 
in simulating high-angle annular-dark-field (ADF) 
scanning transmission electron microscopy (STEM) 
images is proposed. It is shown that the single- 
phonon-scattering model is a good approximation 
except at points close to atomic nuclei if the electron 
probe is comparable in size to that of an atom. It is 
suggested that higher-order phonon scattering may 
improve the resolution of the ADF STEM images. 

The author is grateful to Drs J. Bentley and K. B. 
Alexander for many discussions and to the referees 
for useful suggestions. This research was sponsored 
by the Division of Materials Sciences, US Department 
of Energy, under contract DE-AC05-84OR21400 with 
Martin Marietta Energy Systems, Inc. 

APPENDIX A 

Equivalence of (8c) with the inelastic multislice theory 

For easy notation, one separates the wave function 
from its plane-wave part by defining 

qt.(r) = c . (b ,  z) exp ( i k . .  r), 

qt°(r) = c°(b,  z) exp ( i k . .  r). 

(A. la)  

(A.lb)  

For the nth excited state, (8c) can be rewritten as 

c . (b,  z) = a i dz' { H ~ ( b , z ' ) ~ ° ( b , z  ') 
0 

x[0qt°(b,  z')/Oz]-'}c°(b, z). (A.2) 

By neglecting the back-scattering term under the 
small-angle approximation, in the multislice method, 
the solution of the elastic Schrrdinger equation can 
be written (Cowley & Moodie, 1957; Ishizuka & 
Uyeda, 1977) as 

0 c . ( b , z + A z ) = [ c ° ( b , z ) Q ( b , z ) ] ® P . ( b ) ,  (A.3) 

where Q is the phase-grating function of the crystal 
slice Az: 

z+Az 1 
Q ( b , z ) = e x p  io- I d z 'V (b , z ' )  ; (A.41 

z 

the wave propagation function is 

P,(b) = (iAzA,) -~ exp [iTrb2/2A,Az]; (A.5) 

o" = e~ hvo; Vo is the electron velocity; A,, is the electron 
wavelength of energy E,. 

Now one derives the relationship which governs 
the inelastic wave c , (b ,  z) before and after being 
scattered by a very thin crystal slice of thickness Az. 

From (A.2), one can directly write 

c . (b,  z + Az) - c.(b, z) 

=or i dz' { H'o(b, z') ~°(b,  z ') 
0 

x[a~° (b , z ' ) / a z ]  -'} 

x[cO(b,z+Az)_ o c . ( b ,  z)] 

z+Az 
+or ~ dz' { H'o(b, z') 

z 

x ' t '~(b, ' o z )[o q,'.(b, z ' ) o z J - ' } c ° . ( b ,  z + az) 

~- c , (b ,  z)Uc°(b, z + Az) /c°(b ,  z ) -  1] 

+ a{h'o(b,  z )~°(b ,  z)UOXP°(b, z)/az]- '}  
0 x c , (b ,  z + az) ,  (A.6) 

where 
Z + A Z  

h ' .o :  I H'.o(b, z') dz'. (A.7) 
z 

Equation (A.6) can be conveniently written as 

c ,(b,  z + Az) = c,(b ,  z)[c°(b,  z + Az)l  c°(b,  z)] 

+ ,~{h'o(b, z)~'°(b, z) 

x [ a ~ ° ( b ,  z)lazJ-'}c°(b, z + Az). 
(A.8) 

For fast electrons, it is always a good approximation 
to assume forward scattering (see Appendix B), so 
that 

0 ~°(b ,  z)laz = [ik, zC°(b, z) + ac°(b,  z)laz] 

x exp ( i k , .  r) 

--~ ik, zc°(b, z) exp (ik,,.  r). (A.9) 

With (A.9), (A.8) becomes 

¢,(b,  z + Az)=  [C,,(b, z ) -  io'h',o(b, z)¢°(b, z)] 

x { ¢ ° ( b , z + A z ) / c ° ( b , z ) } .  (A.10) 

The physical meaning of (A.10) can be interpreted 
as follows. The first term in [ . . . ]  [c , (b ,  z)] is the 
inelastic wave generated before the wave arrives at 
the slice entrance face located at z = z. In the single- 
inelastic-scattering model, this part of the wave will 
only be elastically scattered when it penetrates the 
crystal slice and is responsible for the formation of 
Kikuchi patterns. The second term in [ . . . ]  (crh',oCo)° 
is the newly generated inelastic wave when the elastic 
wave (C °) penetrates through the slice. The elastic 
scattering of these two parts within the slice is 
included in the term c°(b,  z + A z ) / c ° ( b ,  z). For a 
very thin slice (Az- ,0) ,  P, is very close to a Dirac 
6 function, with (A.3), (A.10) can thus be 
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approximately written as 

~,(b, z + Az)= [q~,(b, z ) -  io'h'o(b, z)q~o°(b, z)] 

x[  o ( b , z ) Q ( b , z ) ] ® p . /  o ~.(b, z) 

----- [ O(h, z){~,, (b, z) 

- icrh',o(b, z)cp°o(b, z)}]P,(b). (A.11) 

Equation (A.11) is the exact form of the multislice 
theory for single inelastic scattering (Wang, 1989). 
This establishes the equivalence of (8c) with the other 
inelastic-scattering theories. 

APPENDIX B 

Calculations of S{.) and Z functions in the 
multislice scheme 

For convenient notation, the subscript n in (5b) is 
dropped and U = H ' , ( r ) .  Equation (5b) can be writ- 
ten as 

(V2+k2)v l r°=(2me/h2)U(r )g  r°. (B.1) 

This equation is the standard elastic-scattering 
equation of high-energy electrons. By writing 

~ o _  O e x p  ( i k . r ) ,  (B.2) 

the calculation of t# ° is governed by (A.3). In the 
multislice approach, a crystal is cut into many slices 
in the z direction and the atomic structure in each 
slice is projected onto a plane perpendicular to the 
z axis. It is not straightforward to find Oqt°(r)/Oz 
directly from 1/,o in the multislice approach. For this 
reason one starts from (B.1). If one puts (B.2) into 
(B.1) and neglects the 02q~°/Oz 2 term, (B.1) becomes 

a~°(r) - { (2me/h 2) U(r)~ ° - (a2/ax 2 + 021a.v2) ~ ° 
oz 

- i2(kxa/ax+kya/Oy) tp°} / i2k~.  (B.3) 

Reintroduction of the n and m notation gives 

~0°(r) 
S("~( r ) -o~O(r ) /Oz  

~° exp [ i (ko-km)  • r] 
• 0 tk,,zq~,, + aq~ ° ( r ) /az  

= ~° exp [ i ( k o - k m ) .  r] 

• 0 V(r)q~o x { tk,,,~., + [ - (2mee/h 2) 

-- ( 0 2 /  OX 2 + a 2 0 y 2 ) ~ O  m - -  i2(k,,,,, O/ Ox 

+ k,,y a/ay)q~°]/i2k,,,,}-', (B.4) 

where the calculation of q~o and q~o is governed by 
(A.3). The momentum transfer during the inelastic 
transition from the ruth state to the nth state is q~, = 
k. - k ~ .  In (B.4), crystal potential V and the Laplace 
operator characterize the elastic rescattering of the 

inelastic wave• Therefore, the St,~ function is respon- 
sible for the formation of Kikuchi lines. For high- 
energy electrons, to a good approximation, the first 
term in the denominator of (B.4) is much larger than 
the remaining terms; thus 

S~,,)(r) = 0 exp (iq,,o. r)/ik,,=q~ ° . (B.5) 

If q~o= o ,  iS,,,, I = l /k, , .•  

Note added in proof: Recent numerical calculations 
have found that the &,)(b, z) function defined in 
( l i b )  is very important in the formation of Kikuchi 
patterns• In this paper, the momentum transfer in- 
volved in a single-inelastic-scattering process is 
approximately represented by an average value q, 
when deriving (20) and (47)• In practical calculations, 
the &n) function take the form 

&,,(r)  =- gr°(r, Eo)[0~F°(r, E,,, q,)/Oz] -I, 

where ~°( r ,  Eo) and ~°( r ,  E,, q,)  are the multislice 
solutions of (5b) for electrons of incident energies 
E0 and E, and wave vectors k and k + q , ,  respectively• 
The selection o fq ,  can critically affect the appearance 
of the final Kikuchi pattern (Wang, in preparation). 
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Abstract 

Measurement of weak reflexions is often skipped by 
computer-controlled diffractometers. Such a practice 
can cause systematic errors in the scale and thermal 
factors as calculated by a Wilson plot, with con- 
sequent difficulties for the solution of the crystal 
structure by direct methods. A simple statistical 
method for estimating unobserved reflexions is 
described together with applications of the method. 

1. Abbreviations 

N number of atoms in the unit cell 
s (sin 0)/A 
B overall thermal factor 
K absolute scale factor 
fo scattering factor of j th atom at rest 

scattering factor o f j t h  atom, thermal vibration 
included 
structure factor F 

N 

s < = z i  
j = l  

N 

Y.= Y'-f7 
j= l  

0108-7673/91/060698-05503.00 

no number of different observed reflexions in a 
shell of the Wilson plot (symmetry equivalents 
and/or  Friedel pairs included) 

n,, number of different unobserved reflexions in a 
shell (symmetry equivalent and/or  Friedel pairs 
included) 

tl t = n o q- n u 

l -- I F o U  2 

IM threshold intensity for unobserved reflexions in 
a given range of the Wilson plot 

z normalized value of I 
zM threshold value of z for unobserved reflexions 

in a given range of the Wilson plot. 

2. Introduction 

Reflexions with intensity below a certain threshold 
are often considered as 'unobserved', i .e.  their 
measurement is skipped by computer-controlled 
diffractometers. There are practical reasons for this: 
time is saved in data collection and crystal radiation 
damage is reduced. But there are also some draw- 
backs: 

(a) The structural information contained in such 
weak reflexions is neglected. This may be vitally 
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